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The scenario of transition to chaos for a sphere falling or ascending under the
action of gravity in a Newtonian fluid is investigated by numerical simulation. The
mathematical formulation is parameterized using two non-dimensional parameters:
the solid/fluid density ratio and the generalized Galileo number expressing the ratio
between the gravity–buoyancy and viscosity effects. The study is carried out fully
in this two-parameter space. The results show that for all density ratios the vertical
fall or ascension becomes unstable via a regular axisymmetry breaking bifurcation.
This bifurcation sets in slightly earlier for light spheres than for dense ones. A steady
oblique fall or ascension follows before losing stability and giving way to an oscillating
oblique movement. The secondary Hopf bifurcation is shown not to correspond to
that of a fixed sphere wake for density ratios lower than 2.5, for which the oscillations
have a significantly lower frequency. Trajectories of falling spheres become chaotic
directly from the oblique oscillating regime. Ascending spheres present a specific
behaviour before reaching a chaotic regime. The periodically oscillating oblique regime
undergoes a subharmonic transition yielding a low-frequency oscillating ascension
which is vertical in the mean (zigzagging regime). In all these stages of transition,
the trajectories are planar with a plane selected randomly during the axisymmetry
breaking. The chaotic regime appears to result from an interplay of a regular and of
an additional Hopf bifurcation and the onset of the chaotic regime is accompanied
by the loss of the remaining planar symmetry. The asymptotic chaotic states present
an intermittent character, the relaminarization phases letting the subcritical plane and
periodic trajectories reappear.

1. Introduction
The motion of particles under the simultaneous action of external and hydro-

dynamic forces is one of the most important issues in two-phase flow from the
viewpoint of both fundamental theory and applications. The classical theory based
on knowledge of the creeping and laminar flow past a solid sphere, a bubble or
a liquid drop yielded a variety of semi-empirical models (see e.g. Magnaudet 1997,
for an exhaustive review) allowing the free-particle behaviour to be reproduced
at low numerical costs and with a high degree of reliability up to a particulate
Reynolds number of about 200. Beyond this limit, all ‘laminar’ models fail. It has
been recognized that this is linked to the onset of instabilities in the system of the
moving particle and surrounding fluid.
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Recently, significant progress has been achieved in understanding the transition
in the wake of a fixed sphere. It is widely accepted that the sphere wake loses
its axisymmetry at a Reynolds number (Re) of 212 via a regular bifurcation (see
Natarajan & Acrivos 1993). A steady regime characterized by a planar symmetry
exists in the interval of Re ∈ [212, 275] (Johnson & Patel 1999; Mittal 1999a;
Ormières & Provansal 1999; Tomboulides & Orszag 2000). It has been shown in
Ghidersa & Dušek (2000) that the symmetry plane is selected randomly by initial
perturbations and is conserved at the secondary bifurcation, which is of Hopf type,
sets in at Re = 275 and leads to an unsteady periodic regime. Both experiments
(Ormières 1999) and numerical simulations (Mittal 1999a; Tomboulides & Orszag
2000) agree that the periodicity is lost beyond Re = 300. The loss of periodicity is
linked to the loss of planarity (Mittal 1999a; Tomboulides & Orszag 2000) and to
the onset of chaos reported by Tomboulides & Orszag (2000) at Re= 500.

The transition scenario of spherical particles moving freely under the action of
gravity, buoyancy and hydrodynamic forces is much less clearly established. For
practical experimental reasons, the earliest work was motivated by the investigation
of the behaviour of the wake of a sphere moving with a constant velocity. Magarvey
& Bishop (1961), Magarvey & MacLatchy (1965) and Goldburg & Florsheim (1966)
are commonly cited as pioneering in the study of the fixed sphere wake. Indeed, in
the laminar (axisymmetric) regime the asymptotic state is steady and the wakes of
a free and of a fixed particle are identical. This is, however, not the case as soon as
the loss of axisymmetry sets in. We have shown (Jenny, Bouchet & Dušek 2003) that
the breaking of axisymmetry is influenced by the additional degrees of freedom of the
free particle and depends on two parameters which characterize the parameter space.
The first one is the density ratio ρ0/ρ where ρ0 is the density of the sphere (assumed
to be homogeneous) and ρ is that of the fluid. The second one is the non-dimensional
number characterizing the ratio of buoyant and viscous effects, to which we extended
the name of Galileo number (G) commonly used for bubbly flows (e.g. Mougin &
Magnaudet 2002b). In this paper, the number G is defined as

G =

√
|ρ0/ρ − 1| gd3

ν
, (1.1)

where g is the acceleration due to gravity, d the sphere diameter and ν the kinematic
viscosity of the fluid. It is equal to the square root of the Archimedes number
(Karamanev 1996). In the following bibliographical overview we convert available
data to these characteristic parameters. This provides a reference for the present work
and allows the available results to be compared on a common basis. The asymptotic
Reynolds number, though often used in the description of experiments, is not an
external parameter, unlike for a fixed sphere placed in a uniform flow. It results
rather from the equilibrium of external and hydrodynamic forces and does not have
a constant value if the asymptotic regime is unsteady. In axisymmetric (laminar)
regimes, numerical simulations and very well established empirical laws provide the
drag coefficient CD as a widely accepted function of the Reynolds number. The
relation

CD(Re∞) =
4G2

3Re2
∞

(1.2)

then yields an easy conversion between the asymptotic Reynolds number Re∞ and the
Galileo number G. At Re∞ = 212, for example, the drag coefficient is equal to 0.753,
i.e. G =159.3. In the transition domain, in cases when the bibliographical references
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do not provide enough data, we infer the values of G from indicated Re∞ values
by comparing them to the numerical mean Reynolds number values of simulations
presented in this paper.

The early observations of Magarvey & Bishop (1961) and Magarvey & MacLatchy
(1965) were those of freely falling liquid drops. On the one hand, falling drops
and ascending bubbles are physically different systems, but on the other hand it is
known that surface-active impurities (see e.g. Duineveld 1995) may make a small fluid
inclusion behave much like a rigid sphere. Indeed, the experiments of Magarvey &
Bishop (1961) and Magarvey & MacLatchy (1965) show vortex shedding very similar
to that observed in the wake of a solid fixed sphere. The experiment of Magarvey
& Bishop (1961) at Re∞ = 350 corresponds to ρ0/ρ between 1 and 1.6 and G ≈ 250.
The observed Strouhal number of 0.12 is very close to that of the fixed sphere
wake. Similar experiments but with real solid spheres (among others at ρ0/ρ = 1.12,
G = 220) were described in Goldburg & Florsheim (1966). Their figure 6 allowed
them to conclude that, at Re =300, i.e. at G ≈ 220, the wake had a significantly lower
frequency: St ≈ 0.07.

The next motivation having focused attention on the behaviour of free falling or
ascending spherical particles was the issue of fluidized beds in chemical engineering in
the late 1980s and early 1990s. In an experimental work, Fortes, Joseph & Lundgren
(1987) were concerned mainly by the particle interaction in a system of many spherical
particles maintained in suspension in an ascending stream of fluid. It is important
to note that the particle regimes are not only ‘definitely non-Stokesian’, but even
far beyond the transition threshold (particle Reynolds numbers exceeding 700). The
impact of transition in the fluidization process was recognized in Karamanev &
Nikolov (1992); Karamanev, Chavarie & Mayer (1996) and Karamanev (1996, 2001).
The work of Karamanev et al. is motivated by the design of inverse fluidized beds
involving particles significantly lighter than the transporting fluid. In their experiments
with individual ascending particles, the authors note that the laminar models fail
beyond the transition threshold, observed at a rather low particulate Reynolds number
(Re = 130) for particles of small density ratios, ρ0/ρ � 0.3. They observe a practically
constant drag coefficient CD =0.95 in a wide interval of asymptotic transition regimes.
The light-particle drag coefficient is thus found to be practically twice as high as that
of particles characterized by density ratios ρ0/ρ > 0.9, departing significantly less
from classical drag laws. The particle trajectories are observed to be ‘spiral’ and the
Strouhal numbers are comparable to those of the fixed sphere wake (between 0.1 and
0.2) in Karamanev et al. (1996).

Lunde & Perkins (1997) set up experiments both with bubbles and light solid
spheres. The latter are made of expanded polystyrene ρ0/ρ = 0.05 and their asymptotic
regimes correspond to G =220–350. No quantitative data are provided for their
trajectories, but the verbal description states a ‘chaotic motion’ and an ‘intermittent’
wake. An acoustic velocity measurement technique brought interesting results in
Mordant & Pinton (2000). Three cases correspond to the transitional regimes
investigated in the present work: ρ0/ρ = 2.56, G =227; ρ0/ρ =7.71, G =183; and
ρ0/ρ = 7.85, G =260. The last two density ratios, those of steel spheres, are too
high to yield observable oscillations of the velocity, but in the case of glass spheres
(ρ0/ρ = 2.56, G =227), the acceleration ramps present visible oscillations. The period
of oscillations is 0.125 s, i.e. taking into account the data of the paper, this corresponds
to a Strouhal number of 0.055.

Much recent experimental and numerical work tackles the problem of a single
bubble ascending in a quiescent fluid. Although, as already stated, this system
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is different, especially if the bubbles rise in purified water, certain experiments
provide data relevant for very light solid spheres. Lunde & Perkins (1997) state
that a spheroidal shape of bubbles and zigzagging plane trajectories change to a
spiralling motion. Ellingsen & Risso (2001) observe individual ascending bubbles
(ρ0/ρ = 0) at G =390. From case to case, the trajectories are either zigzagging or
spiral. Their data yield a Strouhal number of 0.05 and a drag coefficient of 0.2.
(Note that the light-sphere data of Karamanev (2001) include the bubbles, i.e. this
drag coefficient is to be compared to Karamanev’s 0.95.) The numerical simula-
tions of non-deforming ellipsoidal bubbles with various aspect ratios (Mougin &
Magnaudet 2002b) shed light on the role of the bubble deformation in the onset
of instabilities and in the trajectory behaviour. They show that, in ideally pure
liquid, spherical bubbles keep a stable axisymmetric wake whatever the Galileo
number G. Aspect ratios χ (ratios of the large and small half-axes of the rotation
ellipsoid) exceeding 2.2 are necessary to trigger instabilities. At χ =2.5, Mougin &
Magnaudet (2002b) reproduce the transition from a zigzagging to a helical trajectory
observed, experimentally, by Lunde & Perkins (1997). Wu & Gharib (2002) paid
special attention to the purity of the water in their experiments and, in spite of
that, observe two different bubble forms created by different injection conditions:
spherical and ellipsoidal ones. The ellipsoidal bubbles behave in agreement with
expectations (spiral trajectories), whereas the spherical ones present instabilities too
and their trajectories are observed to be plane and zigzagging. The authors propose
a plausible explanation: shedding of residual impurities from the interface by strong
initial perturbations in the process of the creation of ellipsoidal bubbles. The data
concerning the spherical bubbles can thus also be considered relevant for solid
spheres with a density ratio of ρ0/ρ = 0. With increasing Galileo numbers G, Wu
& Gharib (2002) report a vertical straight trajectory at G =115, an oblique straight
trajectory at G =159 and trajectories zigzagging vertically in the average in a vertical
plane at G =185, 227 and 255. The Strouhal number of the zigzagging motion is
found to be 0.087 and the drag coefficient is CD = 0.8 at Re∞ = 300 (i.e. G =230,
see (1.2)).

In conclusion, the literature allows us to expect that, in the early stages of
transition, the trajectories of solid spheres are plane. At the first stage, the loss
of axisymmetry yields oblique and steady trajectories. The latter lose the stability via
a Hopf bifurcation and oscillations set in. The oscillations are reported to have a
significantly lower Strouhal number in most investigations dealing with spheres with
a density ratio lower than 3. Many uncertainties, however, remain and the picture of
the scenario of transition is far from complete.

Numerical simulations are, nowadays, a very practical and reliable way of
investigating transition scenarios. Apart from the numerical simulations of Mougin &
Magnaudet (2002b), numerical work concerning free particles in transitional regimes
is still practically non-existent. The simulations past a deformable liquid drop of
Bozzi et al. (1997) are limited to axisymmetric regimes and the numerical techniques
proposed by Glowinski et al. (2001) and Hu, Patankar & Zhu (2001) aiming at
direct numerical simulations of many particle systems have been used, so far, for
particulate Reynolds numbers of Re∞ � 118 (Glowinski et al. 2001) and are restricted
to sedimenting particles. On the other hand, these methods are much more powerful
because they potentially allow us to tackle the still unsolved numerical problem of
a deformable fluid inclusion and the many particle interactions in a sedimentation
process. The ability to treat more complex systems is paid for by greater numerical
costs and other limitations. For instance, the particle equations are discretized using
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an explicite scheme in Glowinski et al. (2001), which excludes light particles (Jenny
et al. 2003).

The investigation of the transition requires long runs and thus reduced costs
of simulation. A specially adapted numerical technique is required for simulating
particles of densities close to zero. A suitable technique has been proposed in Jenny
et al. (2003) and Jenny & Dušek (2004). It meets the requirements of direct numerical
simulations of the transition of light and infinitely light particles at costs not far above
those of simulating a fixed sphere wake in Ghidersa & Dušek (2000). Special care is
also given to numerical accuracy. The objective is achieved by solving the particle
motion equation fully implicitly and exactly at each time step. The presence of the
additional degrees of freedom of the moving body does not lead to any stability or
accuracy reduction. The preliminary results of Jenny et al. (2003) show the influence
of the sphere degrees of freedom on the threshold of axisymmetry breaking and
confirm that for all particle densities the first stage of transition is characterized by
steady oblique trajectories. The numerical results are shown to agree quantitatively
with experimental observations.

The purpose of the present paper is to paint a complete picture of the transition
in the two-dimensional parameter space of density ratios and Galileo numbers G.
In § 2, we formulate the mathematical definition of the problem. Some additional
experimental data obtained in our laboratory completing those presented above are
discussed in § 3 to help in validating the simulations. Five different regimes are found
during the transition. They are illustrated for light spheres of density ratio ρ0/ρ < 1
in § § 5–8. A synthetic study in the parameter space is presented in § 9. The main part
of the paper is focused on the analysis of attractors. A section is added to facilitate the
comparison with experiments. To what extent imperfections in the sphere fabrication
might change the reported numerical results is addressed in § 10. The final discussion
is presented in § 11.

2. Mathematical formulation
Unlike the wake of a fixed sphere, the problem of a freely moving solid object

contains six more degrees of freedom in addition to that of the flow field. These new
degrees of freedom can be described by the velocity of the centre of mass of the sphere,
denoted u and the angular velocity of rotation around the centre of mass, denoted Ω .
Both velocities are taken with respect to a fixed frame. The resulting physical system
is made of two coupled phases. First, the fluid, the flow field of which is described
by the fluid velocity v and the pressure p is perturbed by the motion of the particle.
Secondly, the solid sphere is set in motion by buoyancy and gravity forces and the
action of the fluid perturbs its trajectory. The fluid is characterized by its density ρ

and the kinematic viscosity ν and the sphere by its density ρ0 and its diameter d .
Unlike for a fixed sphere wake, the sphere velocity is not an external parameter of the
system. Instead, the effective acceleration |ρ0/ρ −1|g, where g denotes the acceleration
due to gravity, can be taken as characteristic of the gravity–buoyancy effects and, as
a consequence, the velocity and time units are chosen as:

U ∗ =
√

|ρ0/ρ − 1| gd, (2.1a)

T ∗ =

√
d

|ρ0/ρ − 1| g . (2.1b)
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The flow velocity is expressed with respect to a fixed frame, but the flow field is
described as a vector function of coordinates taken in a frame, the origin of which
coincides with the sphere centre and which moves translationally with the sphere.
The flow field then satisfies the Navier–Stokes equations non-dimensionalized with
respect to the velocity scale mentioned above and the sphere diameter:

∂v

∂t
+ [(v − u) · ∇]v = −∇ · p +

1

G
∇2 · v, (2.2a)

∇ · v =0. (2.2b)

Equations (2.2a) and (2.2b) involve just one parameter: the number G (1.1). They
have to be completed by the boundary condition on the sphere surface S. The non-slip
condition

v|S = u + Ω × r|S (2.3)

is used, where rS stands for the position vector on the sphere surface.
The velocities u and Ω satisfy the motion equations (Jenny et al. 2003; Jenny &

Dušek 2004)

ρ0

ρ

du
dt

=
6

π
Ff l(v, p) + kf ix, (2.4a)

ρ0

ρ

dΩ

dt
=

60

π
M f l(v, p), (2.4b)

where Ff l and M f l are, respectively, the hydrodynamic force and torque:

Ff l(v, p) =

∫
S

f dS, (2.5a)

M f l(v, p) =

∫
S

rS × f dS, (2.5b)

and kf ix = sgn(ρ0/ρ − 1)g/‖g‖. The elementary force f is given componentwise as:

fi =
2

G
Sijnj − p ni, (2.6)

Sij =

(
∂vi

∂xj

+
∂vj

∂xi

)
. (2.7)

In (2.4a) and (2.4b), the reduced density ρ0/ρ appears as a second non-dimensional
parameter of the problem.

The main numerical difficulty of the coupling between (2.2a)–(2.2b) and (2.4a)–
(2.4b) consists in the necessity of using an implicit time discretization (see Jenny &
Dušek 2004). This can be readily seen when the left-hand sides of (2.4a) and (2.4b)
vanish for infinitely light spheres ρ0 = 0. A more accurate argument presented in § 4
shows that, in fact, the numerical difficulties originate from the added mass term of
the hydrodynamic force.

3. Some experimental observations
3.1. Experimental set-up

In parallel with the numerical investigations, we have built an experimental set-up
allowing us to study the free motion of a solid sphere submitted to the action of gravity
and buoyancy. The experimental configuration is made up of a Plexiglas tank allowing
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a horizontal confinement smaller than 1 : 100, and a vertical confinement smaller than
1 : 1000. The asymptotic velocity of the solid sphere is controlled continuously by
varying the temperature (with an accuracy of 0.1◦, and a temperature difference not
exceeding 0.2◦ between the top and the bottom of the tank) and thus the viscosity
of the fluid. (Taking into account the volume of the tank, we chose water). It is also
possible to control, in a discrete way, the asymptotic velocity of the sphere while
varying its diameter and its density. After the sphere is released, it is followed by two
cameras placed on perpendicular racks moving at the same velocity as the sphere. To
measure the trajectory of the sphere in free fall or free rise, the cameras are connected
directly to a computer. Image processing then determines the position of the centre of
the sphere on each image: we thus obtain the coordinates on a horizontal plane. The
image processing takes account of the variation of the refraction indices between the
cameras and the sphere (air, Plexiglas, water) and of the crossing of the wall of the tank
(plate with parallel faces). The vertical coordinate is provided by a sensor which
determines the position of the cameras at every moment. The experimental device
thus makes it possible to obtain the three-dimensional position of the centre of the
sphere every 1/25 s, with a precision of about 0.1 diameter. For supercritical Galileo
numbers G, the amplitude of the deviation from the vertical direction increases
with decreasing density of particles. For the purpose of this preliminary experimental
investigation, we chose ascending spheres. They are made of polypropylene, of density
ranging from 0.7 to 0.9, and have diameters between 1 and 4mm. The sphericity of the
spheres is guaranteed (they are made for ball bearings). It was, however, necessary
to find a reliable method of determining accurately the diameter and the density
of each sphere in order to fix the Galileo number correctly. We combine, for this
purpose, direct measurement of the diameter (accuracy of 0.01 mm) and weighing of
mass (accuracy of 1mg) with measuring of the free ascending velocity in the laminar
(axisymmetric) regime. The reliability of the laminar drag values obtained by the same
code as that used for the numerical simulations presented in the following sections
allows us to guarantee a better than 2% accuracy of ρ0/ρ − 1, i.e. of G.

3.2. Preliminary experimental observations

The first experimental observations at supercritical Galileo numbers ranging from
G = 165 to 255 allow three phases of the instability development of the trajectory
to be distinguished. The first phase corresponds to the initial acceleration until the
sphere reaches the critical Reynolds number of symmetry breaking and until the wake
develops sufficiently to let the symmetry breaking instability appear. In figures 1 and
2, we represent some sample trajectories at G =180 for a density ratio ρ0/ρ =0.89
(the same sphere at the same water temperature). Some information on a regime at
G = 170 for the same density ratio was published in Jenny et al. (2003). The Galileo
number of 180 being quite significantly supercritical, the primary instability develops
rather rapidly within a distance of a few diameters. The stage dominated by the
primary instability corresponds to an almost straight oblique ascension modulated
by the simultaneous onset of the secondary, oscillating, instability. Both the vertical
and the oblique ascension are clearly visible in (b) figure 1, where the trajectories are
restricted to a vertical distance of about 100 diameters above the injection point. The
figure represents the time vs. the deviation from the vertical axis. This way of plotting
projects all the trajectories onto the same plane. Note the random selection of the
trajectory plane in figure 1(a).

Our water tank allows the trajectory to be followed over a distance of almost one
thousand diameters. Moreover, if we follow the sphere all along the tank height, we
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Figure 1. Sample trajectories projected on (a) a horizontal and (b) a vertical plane: initial
phase of instability development for Z < 100 diameters (ρ0/ρ = 0.89,G=180).
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Figure 2. Sample trajectories projected on (a) a horizontal and (b) a vertical plane: full
trajectories observed all the way up the water tank (≈ 1000 particle diameters) (ρ0/ρ = 0.89
G =180).

observe that the sphere sometimes ends up oscillating along a practically vertical mean
direction. The transient phase between the oblique and oscillating trajectory varies
considerably from one experiment to another and, at this regime, most trajectories
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Figure 3. Geometry of the problem. Orientation of axes for light spheres, ρ0/ρ < 1.

even escape outside the field of our image (20 diameters wide). This can be explained
by a variable initial perturbation helping in the instability development. Indeed, in
spite of all efforts aiming at releasing the spheres without much perturbation, the
latter remains significant for the instability development and, of course, varies from
one experiment to another. In figure 2(b), two trajectories remain close to the tank
axis: numbers 1 and 3 (trajectory number 3 leaves the optic field for some time but
eventually comes back). We state that the final stages of both trajectories are similar.
Another striking feature is the loss of planarity of the trajectory (see figure 2(a)). Both
trajectories observed at the full height of the tank present a random-like projection
onto a horizontal plane. The experimental results presented seem to correspond to
chaotic regimes analysed numerically in § 8. For the given density ratio 0.89, the
onset of chaos (for perfectly homogeneous spheres) appears to be situated higher (at
G ≈ 215, see figure 29) but the behaviour is qualitatively similar. In § 10, we explain
this discrepancy by the presence of an air bubble in the ball. The bubble makes the ball
inhomogeneous and creates a slight eccentricity of the mass distribution. In § 10, we
show that this shifts the instability thresholds lower. A more exhaustive and accurate
experimental study is currently in progress with an improved temperature control
system, allowing all the stages of the transition to be followed more systematically
and the control parameters to be set more reliably.

4. Numerical method and validation
The numerical method has been presented in detail in Jenny & Dušek (2004). The

purpose of this brief summary is to facilitate the reading of the next section.
The Navier–Stokes solver is based on a spectral–spectral-element spatial

discretization in a cylindrical domain (see figure 3). The decomposition of the flow
field into a series of Fourier azimuthal modes

p(z, r, θ, t) =

+∞∑
m=−∞

pm(z, r, t) e−imθ , (4.1a)

v(z, r, θ, t) =

+∞∑
m=−∞

vm(z, r, t) e−imθ , (4.1b)
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is crucial for both theoretical and practical reasons. It allows a linear analysis of the
axisymmetry breaking at the primary instability (see also Ghidersa & Dušek 2000)
and reduces the computing costs significantly because the series converges extremely
rapidly in the domain of transition. Only 9 Fourier components (zero to eight) need
be taken into account to reach a better than 1% accuracy in a typical simulation (see
Jenny & Dušek 2004).

The cylindrical domain has a radius of 8 diameters and an overall length of 37
diameters. The sphere is placed 12 diameters downstream of the inflow boundary.
Figure 3 represents the orientation of the axes of the fixed and moving frame in the
case of an ascending sphere (ρ0/ρ < 1). If ρ0/ρ > 1, the sphere falls and the moving
frame is oriented in the same way as the fixed one. Both ways, the z-axis of the
moving frame points in the opposite direction to the sphere’s movement. The flow
velocities being expressed in the fixed frame are zero far from the sphere, positive for
ascending spheres and negative for falling spheres. To simulate an infinite domain,
zero velocity is taken as a boundary condition on the inflow basis of the cylinder
(upper basis of figure 3) and a stress-free boundary condition is imposed elsewhere
in a weak sense. The latter allows vortical structures to leave the domain freely and
makes the solution practically insensitive to the presence of unphysical boundaries
(see Ghidersa & Dušek (2000); Jenny & Dušek (2004) for tests).

The time discretization is based on the time-splitting scheme for the Navier–Stokes
equations ((2.2a) and (2.2b)) presented in Ghidersa & Dušek (2000). It consists of
updating explicitly the nonlinear terms N =[(v − u) · ∇]v by a third-order Adams–
Bashforth method and in solving the Stokes-like problem

v(n+1)

�t
+ ∇ · p(n+1) +

1

G
∇2 · v(n+1) =

v(n)

�t
− N, (4.2a)

∇ · v(n+1) = 0, (4.2b)

where �t is the time step, (n + 1) the current time step and (n) the previous one. The
boundary condition (2.3), taken at the same time, is:

v(n+1)|S = u(n+1) + Ω (n+1) × r|S. (4.3)

As explained above, the motion equations have to be discretized by an implicit
scheme:

ρ0

ρ

u(n+1) − u(n)

�t
=

6

π
Ff l

(
v(n+1), p(n+1)

)
− i, (4.4a)

ρ0

ρ

Ω (n+1) − Ω (n)

�t
=

60

π
M f l

(
v(n+1), p(n+1)

)
, (4.4b)

to accommodate light particles without loss of stability. The solving procedure
described in Jenny & Dušek (2004) is based on the linearity of the Stokes-like
problem (4.2) and on the linearity of the dependence of the hydrodynamic force (2.5)
and torque (2.5) on the pressure and velocity fields. Let us consider a first guess (ṽ, p̃)
for the flow field at the (n + 1)th step obtained by solving (4.2) for known boundary
conditions (4.3) at the previous (nth) step. The equations of motion (4.4) are rewritten
introducing the residual R = [(6/π) Ff l(ṽ, p̃) − i, (60/π) M f l(ṽ, p̃)]T in the following
way:

ρ0

ρ�t
X = R + C, (4.5)
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where X denotes the velocity correction [u(n+1) − u(n), Ω (n+1) − Ω (n)]T and C the force
correction [(6/π) (Ff l(v

(n+1), p(n+1))−Ff l(ṽ, p̃)), (60/π) (M f l(v
(n+1), p(n+1))−M f l(ṽ, p̃))]T

depending linearly on the flow field correction. Owing to the linear dependence of the
Stokes problem (4.2) on the boundary condition (4.3), the term C can be expressed as
A X , where A is a 6 × 6 matrix which depends only on the geometry, viscosity (G) and
the time step �t (see details in Jenny & Dušek 2004). It has rarely to be recomputed
during a given simulation because the time step varies only in the initial stages of the
vertical acceleration. The simple system of six linear equations(

ρ0

ρ�t
1 − A

)
X = R, (4.6)

is easily solved to calculate the velocities u(n+1) and Ω (n+1) and to update the boundary
conditions (2.3) used to compute, finally, the flow field (v(n+1), p(n+1)).

The necessity of adopting the described implicit approach without splitting the
force term on the right-hand side of (4.4a) is best clarified by reminding ourselves
of the added mass effects (Mougin & Magnaudet 2002a). Matrix A includes both
the added-mass and viscous effects. However, for �t → 0, the viscous effects vanish
and the matrix becomes diag(Cam/�t , Cam/�t, Cam/�t, 0, 0, 0) (see Jenny et al. 2003)
where Cam = 0.5 is the added mass coefficient for a sphere. The explicit way to solve
the motion equations (2.4) would be to solve the system:

u(n+1) =

(
1 − Cam

ρ0/ρ

)
u(n) +

Cam

ρ0/ρ
u(n−1) +

�t

ρ0/ρ
F̂, (4.7)

where F̂ is the difference between the whole hydrodynamic force and the added-mass
term. To analyse the numerical stability of (4.7), we consider �t → 0. In that case,
the third term on the right-hand side vanishes and the sphere velocity is reduced to
its vertical component uz. Equation (4.7) reduces to:

u(n+1)
z = (1 − α)u(n)

z + αu(n−1)
z , (4.8)

where α stands for Cam/(ρ0/ρ). This series requires two initial conditions u(0)
z and

u(−1)
z yielding the closed form:

u(n)
z = u(0)

z − �u(0)
z α

1 + α
(1 − (−α)n) , (4.9)

where �u(0)
z = u(0)

z − u(−1)
z is proportional to an initial acceleration. It is obvious that

the series has a limit for n → +∞ if and only if α < 1, i.e. when ρ0/ρ > Cam =0.5.
Extracting the added mass term from the motion equations (2.4) is an alternative
way of avoiding numerical divergence for a light particle (see Mougin & Magnaudet
2002a).

In Jenny & Dušek (2004), two types of validation are presented. First, the numerical
convergence of the discretization is demonstrated and, secondly, a validation by
comparison to the experiment described in § 3 is presented in the oblique ascension
regime for ρ0/ρ = 0.89 and G =173. The agreement in capturing the acceleration
stage and the transition to the asymptotic regime was found to be very satisfactory.

5. Primary instability and a steady oblique ascension or fall
In the following sections, we present the dynamics of the system represented by

the freely moving sphere and by the surrounding fluid in various transitional regimes.
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After discretization, this system has many (of the order of 105) degrees of freedom
relative to the description of the flow field plus 6 degrees of freedom describing
the movement of the solid sphere. In spite of the many degrees of freedom, in the
transitional domain, the dynamics remains that of a low-dimensional system and
can be faithfully described by a single degree of freedom. Of course, during the
simulations, all the 6 degrees of freedom of the sphere and the velocity field at several
points of the wake were monitored confirming this claim. In what follows, we base the
presentation on the description of the sphere motion in terms of the two horizontal
velocity components.

5.1. Linear theory

In order to investigate the primary instability, the Navier–Stokes system is linearized
about the axisymmetric solution. The azimuthal decomposition used in our code
allows a direct linear analysis, which is the most accurate way to determine the
threshold value of G. The immediate consequence of the axisymmetry and of the
absence of swirl in the unperturbed flow is that the space on which the linearized
Navier–Stokes operator is defined can be broken up into an orthogonal system of
subspaces each associated to a given absolute value of the azimuthal wavenumber
(Ghidersa & Dušek 2000). It is known (Natarajan & Acrivos 1993) that the most
unstable subspace corresponds to the wavenumber m =1. The degrees of freedom
added to the system by the free motion of the sphere increase the dimension of the
m =0 subspace by two (vertical components of the translation and angular velocities)
and that of the m =1 subspace by four (horizontal components of the translation and
angular velocity) (see Jenny et al. 2003). All the other subspaces remain unchanged
and, as a consequence, only the stability of m =0, 1 subspaces can change. The results
of linear analysis show that the primary instability corresponds to a real eigenvalue
associated to the m =1 subspace for all density ratios ρ0/ρ. (This implies a non-
oscillating growth of small perturbations.) The additional degrees of freedom are
responsible for a decrease of stability of the axisymmetric regime. This decrease is,
however, not very significant. Instead of G =160 (Re∞ = 212) for ρ0/ρ → ∞ or a fixed
sphere, the threshold moves down to G = 155 (Re∞ = 205) for infinitely light spheres,
ρ0/ρ = 0 (Jenny et al. 2003). This can be partly explained by the strong similarity of
the unstable eigenvectors for these extreme density ratios at the instability threshold
(Jenny & Dušek 2004).

5.2. Breaking of axisymmetry and plane oblique trajectories

The spectral azimuthal decomposition implemented in the used code makes the
axisymmetry of the base flow accurate. As a consequence, the (unstable) axisymmetric
state has to be perturbed to trigger the instability. This can be done easily either
by perturbing the sphere velocity in a well-defined direction at the initial condition
or by adding small-amplitude noise in the initial stages of the simulation. The latter
method was used for the simulating of whole trajectories of particles starting from
rest. Whatever the method, the simulations confirm (see § 3 and Ghidersa & Dušek
2000) that a symmetry plane is selected by the initial conditions. A description of the
movement of the sphere is presented in figure 4. They represent the trajectory of a light
sphere with a density ratio 0.5 released at rest (figure 4a). This slightly supercritical
trajectory (Gcrit = 156.1) presents first a vertical acceleration (figure 4c) during which
the axisymmetric state remains stable. Indeed, the random noise maintained until
t = 50, visible in the logarithmic plot of the horizontal velocity (figure 4b), triggers no
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Figure 4. Acceleration from rest of a sphere of density ratio ρ0/ρ = 0.5 at G = 170. (a) Tra-
jectory. (b) Semi-logarithmic plot of the horizontal velocity ux (x being the horizontal axis
of the trajectory plane). (c) Vertical velocity. (d ) Angular velocity (Ωy , y being the axis
normal to the plane). The plane of the trajectory corresponds to the symmetry plane of the
wake.

exponential growth until t ≈ 20. (The bump at t ≈ 15 shows the random selection of
the trajectory plane. Before emerging substantially from the imposed random noise,
the direction of the horizontal velocity is constantly perturbed. At t ≈ 15, its direction
happens to be almost perpendicular to the final trajectory plane.) The instability sets
in as soon as both a sufficient vertical velocity has been reached and a sufficiently long
wake has developed at t ≈ 20. As expected, the instability reduces the vertical velocity.
The unstable mode is known to enhance the viscosity effects of (to ‘pump’ energy from)
the base flow (Dušek, Fraunié & Le Gal 1994). The instability reduces the vertical
velocity. The vanishing oscillations correspond to the next instability which makes the
wake unsteady at higher G numbers and is due to a Hopf bifurcation, the threshold
of which is at G =173.15 for the density ratio ρ0/ρ =0.5 (see § 5.3 and table 1). The
asymptotic state is steady. Note that the sphere rotates, albeit slowly, under the action
of the torque resulting from the axisymmetry breaking (see figure 4d ). The angular
velocity vector of the rotation is normal to the plane of the trajectory. The rotation
is not essential for the instability onset. Numerical experiments show that even if
the rotation of the sphere is blocked, the asymptotic trajectory is not dramatically
modified and the primary instability threshold moves only slightly upward in terms
of G.
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ρ0/ρ G− λ1 G+ λ2 G2,crit Re2,crit f St Ci/Cr

0 165 −3.2 × 10−2 170 5.2 × 10−2 166.9 224.1 0.068 0.051 1.15
0.5 170 −2.4 × 10−2 175 1.4 × 10−2 173.2 234.9 0.065 0.048 2.33
0.89 175 −1.1 × 10−2 180 8.2 × 10−3 177.9 242.4 0.067 0.049 –
1.3 180 −2.0 × 10−2 190 2.0 × 10−2 185 254.8 0.070 0.051 ∼1.7
2 190 −3.1 × 10−3 195 7.1 × 10−3 191.5 266.1 0.075 0.054 ∼1.4
3 190 −3.1 × 10−2 195 4.6 × 10−3 194.4 271.1 0.176 0.126 –
5 190 −5.0 × 10−2 195 5.9 × 10−3 194.5 271.6 0.176 0.126 –

∞ 195.7 274 0.178 0.127 −0.47

Table 1. Variation of the threshold value of the Hopf secondary bifurcation. (G±, Galileo
numbers, respectively, below and above the instability, threshold, λ± corresponding ampli-
fication rates, G2,crit interpolated critical Galileo number for the secondary instability threshold,
Re2,crit = 〈U〉∞G2,crit. f is the frequency and the Strouhal number is defined as St = f/〈U〉∞.
The constant of the Landau model Ci/Cr = (ωi − ω∞)/λ where ωi and ω∞ are, respectively,
the angular frequency of the linear and saturating oscillations. It has not been determined in
cases marked ‘–’.

5.3. Azimuthal modes – nonlinear modes of the axisymmetry breaking instability

In Ghidersa & Dušek (2000), it is shown that the azimuthal decomposition series
which described the wake of a fixed sphere converges with only a few modes taken
into account (0 < m < 4). Indeed, the maximum amplitude of the modes decreased
by about one decade from mode m to m + 1 at Re = 250. This is because the m > 1
azimuthal modes are, in fact, higher-order nonlinear modes behaving roughly in
proportion to the instability amplitude to the power of m. As a result, not very
far from the instability threshold, the convergence is extremely fast. As shown by
numerical testing in Jenny & Dušek (2004), a similar convergence holds for a free
sphere, moreover the convergence appears to be very good in the whole transition
domain.

Figure 5 shows differences with respect to the fixed sphere wake of Ghidersa &
Dušek (2000). The azimuthal modes of the wake of a free sphere do not decrease
as fast as that of a fixed sphere for increasing azimuthal wavenumber. The distance
between the crest of the modes and the axis is larger because the velocity of the
free sphere is not parallel to the z-axis (figure 6). This purely geometric effect also
enhances higher-order modes, especially in the far wake. Close to the sphere, the
wake is, however, accurately described using only 7 azimuthal modes (m =0 to m =6)
and the accuracy of the resulting direct numerical simulations is better than 1%
(see Jenny & Dušek 2004) even for highly supercritical regimes with a restricted
number of modes. Figure 5(c) shows that the amplitude of the last mode (m =6)
is negligible for z < 10 diameters. Of course, in the far wake, the convergence is
slower. Although the far wake has no effect on the sphere motion, it is necessary
to take enough azimuthal modes because insufficient azimuthal resolution causes
numerical instabilities at the lateral boundary of the computational domain. The 7
modes mentioned were, nevertheless, quite enough for this purpose.

5.4. Absence of bifid wake

The analysis of the flow in the wake of the light sphere of density ratio 0.5 at G =170
reveals another striking difference as compared to the fixed sphere wake. The latter is
known to present a characteristic ‘bifid’ structure in flow visualization. In Ghidersa &
Dušek (2000) this phenomenon has been explained in terms of the superimposition of
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Figure 6. Iso-surface of the axial velocity vz = −0.27 at G = 170 and ρ0/ρ =0.5. The velocity
of the fluid entrained by the sphere is oriented upward. The projection onto the z-axis of the
moving frame is thus negative (see figure 3).

the axisymmetric flow and of the fundamental instability mode. The latter comprises
two counter-rotating vortices always visible on iso-vorticity plots (see Thompson,
Leweke & Provansal 2001). If, however, the axisymmetric transverse flow dominates
locally over the axisymmetry breaking perturbation, the vortices do not emerge. The
profiles of the fundamental instability mode for a light sphere is different to that
for a fixed sphere and its streamwise decay is rather fast along the flow axis (see
figure 5a). As a result, the streamwise vortices never appear in the flow cross-sections
of figure 7. Both close to the sphere (at z =3 diameters) and far downstream (z = 15)
the cross-sections are similar to what can be seen in the domain of a single wake
for a fixed sphere, i.e. only a deformation of the axisymmetric pattern with just one
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Figure 8. Trajectory of a free ascending sphere on a plane fixed by initial perturbations at
G = 170 and ρ0/ρ =0.

point of convergence. As a consequence, a dye injected at the sphere surface would
concentrate in only one filament.

6. Transition to unsteadiness
6.1. Onset of wavy oblique trajectories

For all values of the density ratio, the steady oblique regime becomes unstable and
gives way to unsteadiness. This unsteadiness corresponds to periodic oscillations of
the sphere about an oblique mean direction. The trajectory remains in the same
plane as the previously steady motion (figure 8). The frequency of the oscillations
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is significantly lower than in a fixed sphere wake. For example, for ρ0/ρ = 0 and
at G =165 the non-dimensional frequency is f =0.068 (T ∗)−1 (see (2.1)). In terms
of Strouhal number, defined as St = f/U∞, this corresponds to St = 0.051, a value
considerably smaller than St = 0.127 found for the fixed sphere wake in Ghidersa &
Dušek (2000). This feature appears to be characteristic of spheres with density ratio
lower than 2.5.

The time period T of the sphere oscillations is related to a wavelength λ observable
in figure 9. The wavelength is about 13.2 diameters which yields a phase velocity
c = λ/T , calculated using the time period of the sphere velocity (1/T = 0.068), of
c ≈ 0.9. This is in a very good agreement with other cases of von Kármán vortex
streets such as in the cylinder wake of Williamson (1989) or in the wake of a fixed
sphere (Ghidersa & Dušek 2000).

The Hopf bifurcation, which is at the origin of the unsteadiness, obeys very well
the Landau model (Dušek et al. 1994) (see figure 10 for ρ0/ρ =0.5, G = 175 and
figure 11 for ρ0/ρ = 0, G = 170). It is of supercritical character which enabled us to
calculate the critical Galileo number by interpolating between two amplification rates
below and above the instability threshold (see table 1). The variation of the frequency
due to nonlinear effects of the instability development has also been plotted. Unlike
the known cases of the cylinder wake (see Sreenivasan, Strykowski & Olinger 1987;
Dušek et al. 1994) or of the fixed sphere wake (see Ghidersa & Dušek 2000) the
frequency shift is negative. Let us consider the normalized Landau constant (the ratio
of the real and imaginary part of the coefficent of the nonlinear term of the Landau
model) 
 = −�ω/γ where �ω is the difference of angular frequency of oscillations
at the saturation and in the linear regime and γ is the linear amplification rate (for
more details see e.g. Dušek et al. 1994). The latter was reported to be about −3 for
the cylinder wake and −0.5 for a fixed sphere wake in the cited papers. The value
found for a fixed sphere was also confirmed by Thompson et al. (2001). Figure 11(c)
shows that the Landau constant is positive. The amplification rate from figures 10
and 11(b) combined with the angular frequency shift of figures 10 and 11(c) yields

 = 2.33 for ρ0/ρ = 0.5 and 
 =1.15 for an infinitely light sphere. The figures show the
difficulties in extracting the Landau constant from the simulations. It is necessary to
capture a sufficiently long linear regime, i.e. to be sufficiently close to the instability
threshold and have a weakly perturbed initial condition. These requirements have
been met in figures 11(c) and the accuracy of the frequency shift and of the linear
apmlification rates yield an error of less than 5% of the Landau constant value. This
implies that the Landau constant varies significantly with varying density ratio, but
is systematically positive for density ratios less than 2.5 (see table 1).
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Figure 10. Development of unsteadiness at G =175 and ρ0/ρf = 0.5. (a) Only a small part
of the linear amplification of a weak initial perturbation has been computed. (b) The linear
amplification rate of the oscillation amplitude is γ = 0.0135. (c) Variation of the oscillation
frequency.

6.2. Role of density

Obviously, in the unsteady regime, the density effects become more significant. Table 1
shows amplification rates computed for 8 different density ratios just below and above
the secondary instability threshold. The critical Galileo number and its Reynolds
number equivalent (Re2,crit = U∞G2,crit, U∞ being the asymptotic velocity magnitude
of the steady oblique regime losing its stability) are presented in the next two
columns. The threshold values are calculated by linear interpolation. The dependence
of the secondary instability threshold on the density is more significant than that
of the primary one (figure 12). This can be explained by a greater influence of
the accelerations on the left-hand sides of the motion equations (2.4a) and (2.4b).
In this case, the acceleration is non-zero even in the asymptotic regime and is
obviously greater in all stages of the secondary instability development than during
the development of the primary instability.

Note that a variation of the density ratio brings about a significant change in
the frequency of the periodic regime. Table 1 shows that the variation between the
extreme cases of infinitely light and infinitely dense spheres (respectively, f =0.068 and
f = 0.178) is not uniform. For the density ratio ρ0/ρ = 2, roughly the same frequency
as for ρ0/ρ =0 characterizes the limit cycle. For the value of 3, the oscillations
frequency changes to the value characteristic of dense spheres. At ρ0/ρ =2 and
ρ0/ρ = 3, the two frequencies appear to coexist during a long transitional time. This



Instabilities and transition of a falling or ascending sphere 219

0.06

200 250 300 350 400 450

200 250 300 350 400 450

200 250 300 350 400 450

0.08

0.10

0.12

0.14

uh uh 10–2

10–3

10–1

0.076

0.074

0.072

0.070

0.068

t

t t

f

(a) (b)

(c)

Figure 11. Development of the secondary instability at G = 170 and ρ0/ρ = 0. (a) Oscillation
amplitude of the magnitude of the horizontal component of the sphere velocity growing to
saturation. (b) Semilogarithmic plot of the variation of the oscillation amplitude. The linear
amplification rate is 0.052. (c) Variation of the frequency due to the saturation of the oscillation
amplitude.

200

195

190

185

180

175

170

165
0 1 2 3 4 5

ρ0/ρ

G
2,

cr
it

Figure 12. Critical values of Galileo number at the onset of the Hopf secondary bifurcation
vs. the sphere density.



220 M. Jenny, J. Dušek and G. Bouchet
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radius 1.

suggests that the limit value separating the lower- and higher-frequency domain is
close to 2.5. This is in good agreement with Mordant & Pinton (2000) who observed
experimentally a similarly low frequency (f = 0.079) at G =223 and ρ0/ρ =2.56. The
coexistence of both frequencies observed on both sides of the limit value implies
that two pairs of complex eigenvalues, one with a smaller the other with a greater
imaginary part, exist in the spectrum of the operator linearized with respect to the
steady oblique state. At ρ0/ρ ≈ 2.5, both eigen-pairs are equally unstable, for lower
density ratios the lower-frequency eigen-pair is more unstable and vice versa for
higher density ratios.

6.3. Strongly nonlinear effects of the primary instability

It is numerically difficult to obtain the eigenvalues corresponding to the fully three-
dimensional flow of the steady oblique regime. However, in Natarajan & Acrivos
(1993), the eigenvalue analysis of the axisymmetric flow provides good information
on the secondary (Hopf) bifurcation of the fixed sphere wake. For this reason, we
analysed the eigenvalues of the operator linearized with respect to the axisymmetric
state described in § 5. The 100 least stable eigenvalues in the (least stable) m = 1
subspace are presented in figure 13. Both for computational reasons and for the
sake of clarity, it is preferable to compute the eigenvalues of the exponential of
the operator. Figure 13 represents thus the exponentials eλ for the density ratio
0.5 at G =175, i.e. above the secondary instability threshold. The result is, this
time, negative; no useful direct information on the secondary instability can be drawn
from this analysis. First, no complex eigen-pair is outside the unit circle delimiting the
stability region. Secondly, the eigen-pair closest to the circle becomes, indeed, unstable
at higher values of G (at G =220), but its angle with the real axis (corresponding
to the angular frequency) is 0.88 radians; this yields the frequency f = 0.14 close to
that typical for dense spheres. This allows us to conclude that the primary instability
influences in an essential way the characteristics of the secondary instability.
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Figure 14. (a) Zigzagging trajectory of a sphere at G =200 and ρs/ρf = 0.5. (b) Horizontal
velocity component of the zigzagging motion of (a). (c) Fourier transform (spectrum) of the
asymptotic regime (fundamental frequency f = 0.0343).

7. Subharmonic transition
7.1. Results of simulation: observations

For light spheres, the oblique periodic regime loses its stability very rapidly and gives
way to trajectories of a different type (figure 14a). The figure represents a trajectory of
a sphere of density ratio 0.5 released with a zero velocity. After a short initial vertical
acceleration, the sphere deviates because of the onset of the primary instability, but
there is no visible transient corresponding to an oblique wavy ascension. Instead,
the trajectory rises vertically on average. The motion is periodic with a considerably
longer period and the trajectory remains plane. As observed in § 1, such zigzagging
trajectories are characteristic of spherical bubbles in not absolutely pure water (Wu
& Gharib 2002), i.e. of bubbles behaving like light solid spheres. A more detailed
investigation of the transition from the oblique wavy motion to the zigzagging motion
shows that the regime represented in figure 14 is already rather strongly supercritical,
the threshold of its onset lying below G =180 for the considered density ratio of 0.5.
This explains that the transients are very short and result merely in a shift of the
mean vertical line with respect to the origin of the trajectory. Figure 14(b) shows a
strongly unharmonic character of the oscillations with a ‘hesitation’ in the vertical
ascension stages. The most striking features of the Fourier analysis of the periodic
asymptotic regime is the absence of pair harmonics and the abnormally strong third
harmonic. As a rule, the higher-order harmonics are proportional to the power of the



222 M. Jenny, J. Dušek and G. Bouchet
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fundamental one, the exponent being equal to the order of the harmonic (see Dušek
et al. 1994). This would yield a pure exponential decay.

To see how the zigzagging trajectory arises, it is preferable to choose a slightly
supercritical regime such as that in figure 15. The initial condition of the simulation
is that of an established wavy oblique asymptotic state obtained at G = 175 with the
same density ratio of 0.5. The horizontal velocity presents a growing amplitude. At
the same time, the period of oscillations grows too, manifestly due to a ‘hesitation’
when the trajectory approaches a vertical direction, i.e. when the horizontal velocity
approaches zero. As soon as the vertical direction is reached, the trajectory does
not go back to the initial half-plane, but the next period continues in the opposite
half-plane (the velocity curve has the same form, but has the opposite sign in the
next period). The toggling of the deviation brings about a period doubling. The
initial increase of period in figure 15 is close to a factor of 1.5 (T2/T1 ≈ 1.6). T3/T2 is,
indeed, almost 2 (1.74) which yields, as a result, not a period doubling but a period
tripling. Figure 16 confirms that this observation is neither an artefact due to the
transients appearing when the parameter G changes nor a coincidence occurring for a
single density ratio. The notion of subharmonic transition refers to asymptotic states.
For this purpose, figure 16 presents three asymptotic states at G =180, G =192 and
G =200 for a sphere of density ratio ρ0/ρ = 0.89. The value G =180 in figure 16(a)
lies only slightly above the threshold of the wavy oblique regime. G =192 (figure 16b)
is slightly below the onset of zigzagging and G =200 (figure 16c) corresponds to
the zigzagging regime. The period in figure 16(c) is about 2.5 times longer than in
figure 16(a) and the trend of the period to increase at the approach of the change of
the regime (figure 16b) is obvious. The fact that the ratio of the periods in figures
16(c) and 16(a) is not three can be explained by a rather rapid decrease of period
with growing G above the threshold of zigzagging.

7.2. Theoretical analysis

The period tripling can be related to the absence of pair harmonics of the velocity
oscillations stated in figure 14(c). The absence of pair harmonics itself can easily be
explained on the basis of the following symmetry argument.
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Figure 17. Toggling sinusoidal oscillations modelled by the function:
s(t) = (−1)[t/2π] [1 − cos(t)] ([x] meaning the truncation to the nearest lower integer.)

Figure 17 helps us to understand that the toggling of the trajectory about the
vertical direction amounts to the following symmetry condition for the horizontal
velocity uh (projection of the sphere velocity onto the horizontal axis in the plane of
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z = −0.12 of the non-axisymmetric perturbation (sum of all azimuthal

modes except m= 0) of the wake of an ascending sphere of density ratio ρ0/ρ = 0.5 at G =200.
(a) t = 0: Maximal amplitude of the horizontal velocity in one direction. (b) t = T/4 = 7.263:
Stage of vertical ascension. (Note the absence of perturbation implying axisymmetry in the
near wake.) (c) t = T/2 = 14.527: Maximal amplitude of horizontal velocity in the opposite
direction.

the trajectory):

uh(t + T/2) = −uh(t), (7.1)

where T is the period of the zigzagging motion. The coefficients of the Fourier series:

uh(t) =

+∞∑
n=−∞

cn exp

(
i
2π

T
nt

)
, (7.2)

thus satisfy

cn = (−1)n+1cn. (7.3)

In the absence of the second harmonic, the simplest ratio for a subharmonic transition
is 3, in other words, the primary frequency (triggered by the secondary instability)
excites the third harmonic of the zigzagging motion. To adapt to this period tripling,
the period has to increase by 50% before doubling via the toggling mechanism. The
reason for the toggling is clarified by figure 18, representing the wake of the sphere
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the trajectory of which was presented in figure 14. The figure represents the isosurface
corresponding to a level of the perturbation of the vertical velocity v′

z = −0.12, the
mean vertical velocity of the sphere being 1.38. The negative value means that the
perturbation enhances the entrainment of the fluid; note that the vertical z-axis is
placed horizontally and points downstream. Three stages of a period of the zigzagging
motion are represented. It appears that, whenever the trajectory reaches the maximum
excursion from the vertical line, the near wake becomes axisymmetric, i.e. the lift force
and the torque temporarily disappear. As a consequence, the horizontal acceleration
is zero (and not maximal, the rotation stops). This not only explains the ‘hesitation’
in this stage, but it implies that the sphere crosses to the opposite half-plane by
inertia of the wake, presenting a flapping motion. The periodic extinction allows the
perturbation to be recreated identically on both sides of the vertical line.

8. Loss of planar symmetry, chaos
8.1. Chaotic trajectories and flow field

We have seen that the periodic regimes of light and heavy spheres are different. The
light spheres, unlike the heavy ones, undergo a subharmonic bifurcation and reach a
zigzagging regime. As G increases, the sphere trajectory becomes chaotic, whatever
the density ratio. The transition to chaos occurs from the zigzagging regime for
light spheres and from the oblique oscillating regime for heavy spheres. The onset of
chaos coincides with the breaking of the planar symmetry of the wake. The chaotic
trajectories are fully three-dimensional (see figures 19 and 20).

The mean value of the horizontal velocity tends to zero and the trajectory is
vertical on average. The trajectory in figure 20(a) resembles strongly a helical one,
but as can be seen in figure 20(b), the velocity is chaotic. The spectra (absolute
values of the Fourier transforms) in figures 19(c) and 20(c) present the typical
‘continuous’ aspect characteristic of chaotic signals. In figure 20(c), no dominant
frequency appears. The highest peak in figure 19(c) corresponds to the frequency
f ≈ 0.14. This value may be regarded as a second harmonic of the frequency of the
secondary bifurcation (f = 0.068, see § 6). However, in the spectra characterizing the
chaotic dynamics (see § 8.3) for light spheres, the low frequency (f =0.07) is never
observed, whereas the higher one is omnipresent. The linear anlysis of the unstable
axisymmetric state at Galileo numbers corresponding to chaotic regimes shows that
the rightmost eigenvalue pair eλ in figure 13 has become unstable (in addition to the
already unstable real value). Note that the argument of eλ (manifestly a little smaller
than π/3 in figure 13) corresponds to the imaginary part of λ, i.e. 2π × 0.14 ≈ 0.88.
This suggests that the primary instability is destroyed and the linear analysis of
the axisymmetric wake partly regains a qualitative relevance. It might also explain
the quasi-helical trajectory in figure 20(a) because helical modes represent unsteady
axisymmetry breaking modes.

The instantaneous flow field presents, naturally, a spatially chaotic structure and
has no longer any symmetry (figure 21). In the near wake, because the chaotic
flow is the result of a transition triggered originally by the axisymmetry breaking
bifurcation, the chaotic structures are better represented by iso-surfaces of the non-
axisymmetric part of the flow field obtained by summing all azimuthal modes except
the axisymmetric one (modes m � 1). Downstream of about 5d , the chaotic structures
completely dominate and the flow pattern appears even if the axisymmetric mode is
included.
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250

200

150

100

50

0
–1 –2 –3 –4 –4 –2 0 2 4

z

y x

0.1

0

–0.1

–0.2

–0.3
–0.3 –0.2 –0.1 0 0.1 0.2 0.3

ux

uy

10–1

10–2

10–3

10–4

0 0.1 0.2 0.3 0.4
t

|FFT(uy)|

(a) (b)

(c)

Figure 19. (a) Trajectory, (b) projection of the velocity vector onto the horizontal plane
and (c) the modulus of the Fourier transform (spectrum) of uy for an infinitely light sphere
(ρ0/ρ = 0) at G = 210.

8.2. Onset of chaos

To explain how the chaotic behaviour arises, we have to focus on the dynamics close to
the threshold of its onset. Figure 22 show an exponential relaxation (figure 22b) of the
three-dimensionality below a threshold (lying at G ≈ 218) and an exponential growth
(figure 22e) above this threshold. The simulation in figures 22(a)–(c) has the developed
supercritical chaotic state for the initial condition. There is reversibility for increasing
and decreasing Galileo numbers. A supercritical bifurcation thus seems to be
responsible for the onset of the three-dimensionality of the trajectories. Figures 22(a)
and (b) show a monotonous decay and figures 22(d) and (e) a monotonous growth.
In other words, the perturbation is non-oscillating, i.e. the eigenvalue becoming
unstable and responsible for the bifurcation is real, i.e. the bifurcation is regular.
Figures 22(c) and 22(f ) allow us to compare the oscillations in the subcritical
(periodic) state and in the supercritical state. It appears clear that even before
becoming completely chaotic and three-dimensional, the supercritical state presents
a much slower dominant frequency of the horizontal velocity than the subcritical
state (figure 22g). This frequency disappears when the initially supercritical trajectory
converges to the periodic state. The frequency of the periodic state is f = 0.18. The
dominant frequencies of the supercritical state are visible in figure 22(g). The slow
frequency in figure 22( f ) corresponds to the highest peak, at f ′ = 0.05. Two other
peaks, at f = 0.18 and at f − f ′ = 0.13, dominate the spectrum.
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Figure 22. Onset of chaos for a dense sphere ρ0/ρ = 5. (a, d) Horizontal projection of the
sphere velocity vector, (b, e) Semi-logarithmic plot of the velocity component normal to the
broken symmetry plane, (c, f) Horizontal component of the projection of the sphere velocity
onto the broken symmetry plane. (a–c) Relaxation of a perturbation to a subcritical state
(G =210). (d–f ) Amplification of the three-dimensional perturbation above the threshold of
the chaos (G =225). (g) Fourier transform of the velocity of figure ( f ).

These features are strikingly similar to that observed for Reynolds numbers
exceeding 500 in the work of Tomboulides & Orszag (2000) for the flow past a
fixed sphere. In that case, at Re= 500, a lower frequency (St ≈ 0.045) was observed
together with a higher one at St = 0.167. To simplify the comparison, let us remark
that at G = 225 the mean vertical velocity of the falling sphere is about 1.41, i.e. its
Reynolds number based on this velocity is Re= 320 and the Strouhal numbers of
the frequencies f ′ and f are 0.035 and 0.13, respectively. The fact that, unlike in
Tomboulides & Orszag (2000), the lower frequency dominates in figure 22(g) is not
essential. The velocity field represented at a given point of the flow or a horizontal
velocity component are just two selected degrees of freedom of a more complex
system. The spatial envelopes of the modes oscillating with frequencies f and f ′ are
certainly different and there are, very probably, points of the wake of the fixed sphere
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Figure 23. Onset of chaos for a light sphere ρ0/ρ =0.5 at G= 225. The threshold lies at
G ≈ 215. (a) The projection of the velocity vector onto the horizontal plane. (b) The projection
of the velocity onto the normal direction to the broken symmetry plane. (c) The projection
onto the symmetry plane. (d ) The corresponding trajectory.

where the low frequency dominates (see also Dauchy, Dušek & Fraunié 1997). The
density ratio of 5 was found in many respects to be practically equivalent to infinity
(corresponding to a fixed sphere), moreover the same scenario applies to spheres of
densities higher than 2.5 practically independently of the exact density ratio value.
This might suggest extrapolating the results obtained concerning the transition to
chaos to a fixed sphere wake. Nevertheless, a more detailed investigation of this limit
would be of interest.

As for the light spheres, all that has already been illustrated in the case of the
density ratio 5 still holds: the bifurcation is regular and leads to chaos and three-
dimensionality of trajectories (see figure 23a–d). In figures 23(a) and 23(d), notice
that before the trajectory leaves the symmetry plane the slow zigzagging state is
destroyed. The long stage of rapid oscillations in figure 23(c) is practically periodic
with frequency f = 0.14 typical for unstable oscillating perturbations of axisymmetric
wake. The initial part of this stage corresponds to the exponential increase of the
drifting velocity normal to the original symmetry plane in figure 23(b). (The rapid
oscillations are visible even before the perpendicular velocity component emerges
from the numerical noise. Even ‘exactly’ plane trajectories are plane only within an
error of about 10−5.) The drift of the velocity reaches saturation before the onset
of a new, only intermittent, quasi-plane stage represented by the strong oscillations
perpendicular to the initial direction in figure 23(a). In other words, the trajectory
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Figure 24. Simulation of a forced two-dimensional trajectory in the plane (Oxz) at G =225
and ρ0/ρ = 10. (a) Evolution of the horizontal sphere velocity ux . (b) Fourier transform
(spectrum) of the asymptotic regime. The visible frequencies are f2 = 0.0555, f1 − f2 = 0.1357,
f1 = 0.1912 and f1 + f2 = 0.2467.

starts to zigzag (always roughly parallel to the initial plane, but no longer with a
vertical mean velocity) with a smaller amplitude and with a higher frequency while
drifting perpendicularly to the plane. Once the drifting velocity reaches saturation,
the plane of the zigzagging motion switches direction and an intermittent spot
characterized by low-frequency oscillations characteristic of the subcritical state
sets in.

As a rule, a symmetry breaking bifurcation is inhibited if the symmetry it breaks is
forced, i.e. the subcritical state remains stable in the subspace of symmetric states. This
is not the case if the plane symmetry of the trajectory is forced above the threshold
of the transition to chaos. The velocity of the sphere oscillates in the symmetry
plane much like in figure 22( f ) (see figure 24a). The spectra in figures 22(g) and
24(b) are very similar, with the three highest peaks at about same frequencies. (The
densities correspond to dense spheres in both cases.) The spectrum in figure 24(b) is
typical for a limit torus dynamics (see e.g. Dauchy et al. 1997) with two fundamental
frequencies f1 ≈ 0.19 and f2 ≈ 0.055. (To prove rigorously that the frequencies are
really incommensurate, it would be necessary to show that the frequency ratio evolves
continuously as a function of G (see Dauchy et al. 1997) but this point is not essential
for the present analysis.) The resemblance between the spectra in figure 22(g) and
in figure 24(b) indicates that a Hopf bifurcation accompanies the regular one. The
former exists in the subspace with enforced plane symmetry, the other in its linear
complement. In the linear regime, these bifurcations are independent. The onset of
chaos might be explained by the interaction of both bifurcations via the nonlinear
coupling (see figure 23b, c).

In conclusion, the bifurcation (or, better, one of the bifurcations) at the origin
of the chaos is of regular type. Among all classical scenarii of transition to chaos
described in the literature (see e.g. Bergé, Pomeau & Vidal 1992) only the type I
intermittency starts from a regular bifurcation. The asymptotic state presents, indeed,
a typical intermittent behaviour (see § 8.3 and figures 23), but also figure 20(b) presents
intermittent oscillations of the velocity interrupted by almost monotonous velocity
variations. The typical case of type I intermittency requires a subcritical saddle-node
bifurcation to trigger chaos. In this case, the regular bifurcation seems to be of a
supercritical nature, the chaos resulting from an interplay with a coexisting Hopf
bifurcation.
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nent of the sphere velocity vs. time.

8.3. Investigation of the chaotic domain

A typical trajectory presenting typical intermittent behaviour with two intermittent
spots is presented in figure 25(a) for a light sphere ρ0/ρ = 0.5 at G =220, i.e. only
slightly above the threshold of the transition to chaos. During these spots the trajectory
resumes the subcritical zigzagging behaviour temporarily. The intermittent spots
are characterized by large velocity fluctuations. It is thus easy to identify them in
figure 25(b). The trajectory is quasi-plane during these stages. The pattern of the
velocity vs. time curve of the zigzagging motion of figure 14(b) clearly reappears
during the intermittent stages in figure 25(c). As already noted in the previous
subsection, the characteristic frequency of the (aperiodic) oscillation in the chaotic
and three-dimensional regime is quite different from that of the zigzagging motion.
The rapid oscillations in figure 25(c) have again the frequency f ≈ 0.14 (corresponding
to the imaginary part of the unstable complex eigenvalue of the discretized linear
operator based on the axisymmetric wake). For comparison, the slow zigzagging
frequency is f = 0.038 and its third harmonic is 3f = 0.114 (see § 7).

While investigating the parameter space in the chaotic domain we found one more
striking feature of the dynamics of light spheres. To obtain the results of the parametric
study more rapidly we ran several cases in parallel on a meta-computing cluster using
the same subcritical (periodic) asymptotic state as initial conditions. For spheres
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Figure 26. (a) Quasi-bidimensional trajectory at G = 240 and for ρ0/ρ = 0.5 (critical value of
G for the onset of chaos: Gcrit ≈ 215). (b) Horizontal projection of the velocity. (c, d) Tangential
and orthogonal components of the velocity to the plane defined by the horizontal velocity at
t = 360.

of density ratio 0 and 0.5 and in the intervals 215 < G < 275 and 230 < G < 325,
respectively, the behaviour of the sphere was periodic and plane, the frequency
corresponding to f ≈ 0.14 (see the frequencies presented in the previous subsection).
In figure 26 an example of such a simulation is given for ρ0/ρ = 0.5 and G =240.
Figure 26(b) shows the projection of the velocity vector onto the normal direction to
the plane of the trajectory. (Note the scale of the vertical axis.) figure 26(d ) shows the
diminishing trend of the oscillations in the normal direction indicating the stability
of the planar trajectory. In figure 26(c), the trend to perfect periodicity is visible. To
see if this result means that the chaotic states do not exist in this subdomain of the
parameter space, we ran new simulations for the same parameter values, but starting
from a fully developed chaotic state. The counterpart of figure 26 is presented in
figure 27. The state presents no trend toward two-dimensionality and has the same
intermittent features as that in figure 25. Clearly, in this subdomain of the parameter
space, two stable states coexist.

This result might be important for experiments with very homogeneous spheres. As
shown in figure 28, a sphere released from rest will not be perturbed enough to reach
the chaotic state and will rather be attracted by the periodic one. For imperfectly
homogeneous spheres this is much less likely to occur (see § 10).
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Figure 27. (a) Trajectory starting from a fully three-dimensional motion at G =240 and for
ρ0/ρ =0.5 (critical value of G for the onset of chaos: Gcrit ≈ 215). (b) Horizontal projection of
the velocity. (c, d ) Tangential and orthogonal components of the velocity to the plane defined
by the horizontal velocity at t =360.

9. Diagram in the parameter space
In the previous sections, we showed that all spheres reach, progressively, with

increasing Galileo numbers, a steady oblique and an oblique periodic regime before
starting to move chaotically. We made it qualitatively clear that the thresholds of
the various regimes depend on the density ratio ρ0/ρ. Moreover, only ‘light’ spheres
present a zigzagging state. We stated that the oblique periodic regime is characterized
by two different frequencies, a lower one for light spheres and a higher one for spheres
of higher density. It is necessary to make a chart of the different regimes in the G –
ρ0/ρ parametric space. This chart is provided in figure 29 summing up the simulation
of 81 different asymptotic regimes.

In agreement with expectations, the factor ρ0/ρ in the equations of motion (2.4a)
and (2.4b) plays a more important role as the regimes change from steady to unsteady
and the acceleration of the sphere is more significant. The domain of the periodic
oblique regime is separated into two parts by a roughly horizontal line at ρ0/ρ =2.5.
For spheres with a density ratio lower than 2.5, the frequency of oscillations is
f ≈ 0.065 (i.e. the Strouhal number is St ≈ 0.048), while for spheres with a higher
density ratio this frequency is f ≈ 0.175 (St ≈ 0.130). The limit of existence of the
zigzagging periodic regime seems to lie exactly at the density ratio of one, i.e. the
zigzagging regime exists only for ascending spheres. The delimitation of the subdomain
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Figure 28. (a) Full trajectory starting at rest at G = 250 and for ρ0/ρ = 0.5 (Critical value of
G for the onset of chaos: Gcrit ≈ 215). (b) Horizontal projection of the velocity. (c, d ) Tangential
and orthogonal components of the velocity to the plane defined by the horizontal velocity at
t = 200.

in which two asymptotic regimes coexist is only tentative. We did not make detailed
simulations close to the density ratio 1 to prove that this value is the exact limit.
Nevertheless, no similar case was found for any density ratio greater than or equal
to 1.3. At the Galileo number of 350 (i.e. at particulate Reynolds numbers of about
500) the periodic states coexisting with chaos were no longer in evidence.

10. Not perfectly homogeneous spheres
In § 3, we described preliminary experiments with polypropylene balls used in

bearings. Measurements proved the very good sphericity of the balls and also the
masses of the spheres appeared to be quite reliable in view of a good agreement of the
measured and computed ascension velocities. For the dynamics of unsteady regimes it
is, nevertheless, crucial that the moment of inertia in (2.4) be correctly established. Our
simulations were up to now based on the assumption that the spheres are perfectly
homogeneous. However, when we broke some of the bearing balls we found a small
air bubble trapped eccentrically in the plastic. As a result, the geometrical centre and
the centre of mass of the balls do not coincide. To assess the impact of such an
imperfection we implemented a variable eccentricity of the centre of mass into the
code. This is easily done by adding the term xexc × Ff l to the torque on the right-hand
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side of (2.4). xexc stands for the vector linking the centre of mass of the sphere to
its geometrical centre, at which the hydrodynamic force Ff l acts assuming the sphere
has a perfectly spherical shape.

Figures 30 and 31 show that, naturally, if the initial position of the centre of mass
does not correspond to a static equilibrium (we place it horizontally with respect to
the geometrical centre) the swinging movement of the sphere brings about oscillations
visible in the initial stages of the trajectory. Moreover, this pendulum movement has a
destabilizing effect on the system. Figures 30 and 31 compare the perfect and imperfect
sphere for the density ratio 0.5 for two values of the Galileo number G =170 and
G = 200, respectively. In figure 30, the trajectory of the non-homogeneous sphere,
instead of being steady and oblique, becomes oblique and oscillating, i.e. it is already
undergoing the secondary bifurcation. In figure 31, instead of a zigzagging regime
a chaotic state is obtained. The trend for the non-homogeneous spheres is thus to
undergo the bifurcations more rapidly. This explains why the experimental trajectories
in § 3 are chaotic although the Galileo number is only G =180.

11. Conclusions
Our numerical simulations show that the system represented by a freely falling or

freely ascending sphere under the action of gravity in a Newtonian fluid undergoes
a transition to a full spatio-temporal chaos in the range of Galileo numbers lying
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Figure 30. Trajectory of a homogeneous sphere and a sphere having its centre of mass at 0.025
diameters from the geometric centre at G = 170 and for ρ0/ρ =0.5. (a) Horizontal compo-
nent of the velocity of a homogeneous (dashed line) and inhomogeneous sphere (solid line).
(b) Planar trajectories of a homogeneous (dashed line) and inhomogeneous sphere (solid line).
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Figure 31. Trajectory of an ascending sphere at G = 200 and ρ0/ρ = 0.5. (a) Homogeneous
sphere. (b) Inhomogeneous sphere : the centre of mass is at 0.025 diameters from the geometric
centre of the sphere.

between G = 150 and G = 225, i.e. in terms of asymptotic average Reynolds number,
between 205 and 310. The scenario is significantly different for falling and for
ascending spheres.

For very dense falling spheres, the results obtained are in perfect agreement with
the results of simulation of the fixed sphere wake, the latter corresponding to spheres
of infinite density. The primary (regular, axisymmetry breaking) and the secondary
(Hopf) bifurcations are found at the same thresholds. Moreover, the loss of periodicity
is found to coincide with that of planarity of the trajectories and, in agreement with
Mittal (1999b), with the loss of planar symmetry of the wake. At the opposite limit
of the density scale, the results found are in agreement with the bibliographical data
concerning spherical bubbles of Wu & Gharib (2002) reporting a zigzagging regime
and with those concerning light spheres of Lunde & Perkins (1997) reporting an
intermittent behaviour. Further validations are obtained using our own experimental
data (figure 1). Excellent agreement is reached in the steady oblique regime (Jenny &
Dušek 2004), but discrepancies appear when the behaviour for a given Galileo number
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z ) vs. G for reduced densities, ρ0/ρ = 0 (dashed

line), ρ0/ρ = 0.5 (dash–dotted line) and ρ0/ρ =5 (solid line). The dotted line plots the drag
coefficient of the axisymmetric wake.

and a given density ratio is compared between experimental observations of § 3 and
the numerical results in unsteady regimes. Section 10 provides an explanation in terms
of imperfections of mass distribution of experimental spheres. At the same time, the
considerable impact of slight imperfections on the transition scenario underlines the
necessity of a further experimental investigation allowing other effects potentially
responsible for differences in behaviour of ideally perfect and of real experimental
spheres to be detected.

Whatever the results of this experimental investigation, it is practically impossible
to confirm the results of Karamanev (2001). Although, the instabilities definitely
enhance the (average) drag coefficient, the increase is far from what is found by
Karamanev et al.

The real impact of the transition on many particle systems will certainly consist of a
considerable modification of their dispersion characteristics. The spheres have a trend
to drift horizontally by themselves without interacting, and in the chaotic regime, they
are very receptive to perturbations. To simulate such systems, appropriate numerical
algorithms are available. Hu et al. (2001) and Glowinski et al. (2001) provided an
adaptation to account for very light particles. However, in view of the complexity of
the transition dynamics, the question of whether the numerical costs are not still too
high may be crucial for such a project.

The authors are grateful for being able to run some of the numerical simulations
on the MetaCenter supercomputing facilities provided under the research grant MSM
000000001 of the Czech Republic.
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